11 research outputs found

    Particle-filtering approaches for nonlinear Bayesian decoding of neuronal spike trains

    Full text link
    The number of neurons that can be simultaneously recorded doubles every seven years. This ever increasing number of recorded neurons opens up the possibility to address new questions and extract higher dimensional stimuli from the recordings. Modeling neural spike trains as point processes, this task of extracting dynamical signals from spike trains is commonly set in the context of nonlinear filtering theory. Particle filter methods relying on importance weights are generic algorithms that solve the filtering task numerically, but exhibit a serious drawback when the problem dimensionality is high: they are known to suffer from the 'curse of dimensionality' (COD), i.e. the number of particles required for a certain performance scales exponentially with the observable dimensions. Here, we first briefly review the theory on filtering with point process observations in continuous time. Based on this theory, we investigate both analytically and numerically the reason for the COD of weighted particle filtering approaches: Similarly to particle filtering with continuous-time observations, the COD with point-process observations is due to the decay of effective number of particles, an effect that is stronger when the number of observable dimensions increases. Given the success of unweighted particle filtering approaches in overcoming the COD for continuous- time observations, we introduce an unweighted particle filter for point-process observations, the spike-based Neural Particle Filter (sNPF), and show that it exhibits a similar favorable scaling as the number of dimensions grows. Further, we derive rules for the parameters of the sNPF from a maximum likelihood approach learning. We finally employ a simple decoding task to illustrate the capabilities of the sNPF and to highlight one possible future application of our inference and learning algorithm

    The Hitchhiker's Guide to Nonlinear Filtering

    Get PDF
    Nonlinear filtering is the problem of online estimation of a dynamic hidden variable from incoming data and has vast applications in different fields, ranging from engineering, machine learning, economic science and natural sciences. We start our review of the theory on nonlinear filtering from the simplest `filtering' task we can think of, namely static Bayesian inference. From there we continue our journey through discrete-time models, which is usually encountered in machine learning, and generalize to and further emphasize continuous-time filtering theory. The idea of changing the probability measure connects and elucidates several aspects of the theory, such as the parallels between the discrete- and continuous-time problems and between different observation models. Furthermore, it gives insight into the construction of particle filtering algorithms. This tutorial is targeted at scientists and engineers and should serve as an introduction to the main ideas of nonlinear filtering, and as a segway to more advanced and specialized literature.Comment: 64 page

    The Neural Particle Filter

    Get PDF
    The robust estimation of dynamically changing features, such as the position of prey, is one of the hallmarks of perception. On an abstract, algorithmic level, nonlinear Bayesian filtering, i.e. the estimation of temporally changing signals based on the history of observations, provides a mathematical framework for dynamic perception in real time. Since the general, nonlinear filtering problem is analytically intractable, particle filters are considered among the most powerful approaches to approximating the solution numerically. Yet, these algorithms prevalently rely on importance weights, and thus it remains an unresolved question how the brain could implement such an inference strategy with a neuronal population. Here, we propose the Neural Particle Filter (NPF), a weight-less particle filter that can be interpreted as the neuronal dynamics of a recurrently connected neural network that receives feed-forward input from sensory neurons and represents the posterior probability distribution in terms of samples. Specifically, this algorithm bridges the gap between the computational task of online state estimation and an implementation that allows networks of neurons in the brain to perform nonlinear Bayesian filtering. The model captures not only the properties of temporal and multisensory integration according to Bayesian statistics, but also allows online learning with a maximum likelihood approach. With an example from multisensory integration, we demonstrate that the numerical performance of the model is adequate to account for both filtering and identification problems. Due to the weightless approach, our algorithm alleviates the 'curse of dimensionality' and thus outperforms conventional, weighted particle filters in higher dimensions for a limited number of particles

    How to avoid the curse of dimensionality: scalability of particle filters with and without importance weights

    Full text link
    Particle filters are a popular and flexible class of numerical algorithms to solve a large class of nonlinear filtering problems. However, standard particle filters with importance weights have been shown to require a sample size that increases exponentially with the dimension D of the state space in order to achieve a certain performance, which precludes their use in very high-dimensional filtering problems. Here, we focus on the dynamic aspect of this curse of dimensionality (COD) in continuous time filtering, which is caused by the degeneracy of importance weights over time. We show that the degeneracy occurs on a time-scale that decreases with increasing D. In order to soften the effects of weight degeneracy, most particle filters use particle resampling and improved proposal functions for the particle motion. We explain why neither of the two can prevent the COD in general. In order to address this fundamental problem, we investigate an existing filtering algorithm based on optimal feedback control that sidesteps the use of importance weights. We use numerical experiments to show that this Feedback Particle Filter (FPF) by Yang et al. (2013) does not exhibit a COD

    Particle-filtering approaches for nonlinear Bayesian decoding of neuronal spike trains

    Full text link
    The number of neurons that can be simultaneously recorded doubles every seven years. This ever increasing number of recorded neurons opens up the possibility to address new questions and extract higher dimensional stimuli from the recordings. Modeling neural spike trains as point processes, this task of extracting dynamical signals from spike trains is commonly set in the context of nonlinear filtering theory. Particle filter methods relying on importance weights are generic algorithms that solve the filtering task numerically, but exhibit a serious drawback when the problem dimensionality is high: they are known to suffer from the 'curse of dimensionality' (COD), i.e. the number of particles required for a certain performance scales exponentially with the observable dimensions. Here, we first briefly review the theory on filtering with point process observations in continuous time. Based on this theory, we investigate both analytically and numerically the reason for the COD of weighted particle filtering approaches: Similarly to particle filtering with continuous-time observations, the COD with point-process observations is due to the decay of effective number of particles, an effect that is stronger when the number of observable dimensions increases. Given the success of unweighted particle filtering approaches in overcoming the COD for continuous- time observations, we introduce an unweighted particle filter for point-process observations, the spike-based Neural Particle Filter (sNPF), and show that it exhibits a similar favorable scaling as the number of dimensions grows. Further, we derive rules for the parameters of the sNPF from a maximum likelihood approach learning. We finally employ a simple decoding task to illustrate the capabilities of the sNPF and to highlight one possible future application of our inference and learning algorithm

    How to Avoid the Curse of Dimensionality: Scalability of Particle Filters with and without Importance Weights

    Get PDF
    Particle filters are a popular and flexible class of numerical algorithms to solve a large class of nonlinear filtering problems. However, standard particle filters with importance weights have been shown to require a sample size that increases exponentially with the dimension DD of the state space in order to achieve a certain performance, which precludes their use in very high-dimensional filtering problems. Here, we focus on the dynamic aspect of this “curse of dimensionality” (COD) in continuous-time filtering, which is caused by the degeneracy of importance weights over time. We show that the degeneracy occurs on a time scale that decreases with increasing DD. In order to soften the effects of weight degeneracy, most particle filters use particle resampling and improved proposal functions for the particle motion. We explain why neither of the two can prevent the COD in general. In order to address this fundamental problem, we investigate an existing filtering algorithm based on optimal feedback control that sidesteps the use of importance weights. We use numerical experiments to show that this feedback particle filter (FPF) by [T. Yang, P. G. Mehta, and S. P. Meyn, IEEE Trans. Automat. Control, 58 (2013), pp. 2465--2480] does not exhibit a COD.ISSN:0036-1445ISSN:1095-720

    Asymptotically exact unweighted particle filter for manifold-valued hidden states and point process observations

    Get PDF
    The filtering of a Markov diffusion process on a manifold from counting process observations leads to ‘large’ changes in the conditional distribution upon an observed event, corresponding to a multiplication of the density by the intensity function of the observation process. If that distribution is represented by unweighted samples or particles, they need to be jointly transformed such that they sample from the modified distribution. In previous work, this transformation has been approximated by a translation of all the particles by a common vector. However, such an operation is ill-defined on a manifold, and on a vector space, a constant gain can lead to a wrong estimate of the uncertainty over the hidden state. Here, taking inspiration from the feedback particle filter (FPF), we derive an asymptotically exact filter (called ppFPF) for point process observations, whose particles evolve according to intrinsic (i.e., parametrization-invariant) dynamics that are composed of the dynamics of the hidden state plus additional control terms. While not sharing the gain-times-error structure of the FPF, the optimal control terms are expressed as solutions to partial differential equations analogous to the weighted Poisson equation for the gain of the FPF. The proposed filter can therefore make use of existing approximation algorithms for solutions of weighted Poisson equations.ISSN:2475-145

    Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception

    Get PDF
    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals’ performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the ‘curse of dimensionality’, and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.ISSN:2045-232
    corecore